Analisis Ketergantungan Penggunaan AI Generatif berbasis Large Language Models (LLM) di Kalangan Mahasiswa

Darmawan Thalib, Nurain Karnain, Cinta Labaso, Sri Rahayu Tudja

Abstract


Penelitian ini bertujuan untuk menganalisis tingkat ketergantungan mahasiswa terhadap penggunaan Artificial Intelligence (AI) generatif berbasis Large Language Models (LLM) dalam pembelajaran di perguruan tinggi. Penelitian menggunakan pendekatan deskriptif kuantitatif dengan instrumen yang dikembangkan berdasarkan lima dimensi, yaitu intensitas penggunaan, tujuan penggunaan, dampak positif, dampak negatif atau risiko, serta literasi AI. Data dikumpulkan dari mahasiswa dan dianalisis menggunakan statistik deskriptif. Hasil penelitian menunjukkan bahwa tingkat ketergantungan mahasiswa terhadap AI generatif berada pada kategori sedang dengan rata-rata skor per butir sebesar 3,12. AI generatif memberikan manfaat fungsional yang kuat dalam membantu pemahaman materi dan efisiensi belajar, namun juga menunjukkan indikasi ketergantungan kognitif dan emosional pada tingkat menengah, sementara ketergantungan interpersonal terhadap AI masih relatif rendah.

Keywords


AI generative; Large Language Models; ketergantungan mahasiswa; pembelajaran perguruan tinggi; literasi AI

Full Text:

PDF

References


Aghaee, N., Vrågård, J., & Brorsson, F. (2024). Generative AI in Higher Education: Educators’ Perspectives on Academic Learning and Integrity. European Conference on E-Learning, 23(1), 406–414. https://doi.org/10.34190/ecel.23.1.3090

Almufarreh, A., Ahmad, A., Arshad, M., Onn, C. W., & Elechi, R. (2025). Ethical Implications of ChatGPT and Other Large Language Models in Academia. Frontiers in Artificial Intelligence, 8. https://doi.org/10.3389/frai.2025.1615761

Aziz, A. (2025). Chatgpt Utilization in Academic Practices: Insights From English Language Education Students in the Digital Era. Edutech Jurnal Inovasi Pendidikan Berbantuan Teknologi, 5(3), 587–594. https://doi.org/10.51878/edutech.v5i3.7118

Chee, H., Ahn, S., & Lee, J. (2024). A Competency Framework for AI Literacy: Variations by Different Learner Groups and an Implied Learning Pathway. British Journal of Educational Technology, 56(5), 2146–2182. https://doi.org/10.1111/bjet.13556

Kang, J., & Ahn, J. (2025). Technologies, Opportunities, Challenges, and Future Directions for Integrating Generative Artificial Intelligence Into Medical Education: A Narrative Review. The Ewha Medical Journal. https://doi.org/10.12771/emj.2025.00787

Kim, Y., Kim, J. H., & Zhang, S. (2025). Trusting AI Too Much? Psychological Predictors of Overtrust and the Mitigating Role of AI Literacy. https://doi.org/10.21203/rs.3.rs-7315296/v1

Lin, Z. (2023). Why and How to Embrace AI Such as ChatGPT in Your Academic Life. Royal Society Open Science, 10(8). https://doi.org/10.1098/rsos.230658

McGuire, A. (2023). Leveraging ChatGPT for Rethinking Plagiarism, Digital Literacy, and the Ethics of Co-Authorship in Higher Education. Irish Journal of Technology Enhanced Learning, 7(2), 21–31. https://doi.org/10.22554/ijtel.v7i2.131

Neha, F., Bhati, D., Shukla, D. K., & Amiruzzaman, M. (2024). ChatGPT: Transforming Healthcare With AI. Ai, 5(4), 2618–2650. https://doi.org/10.3390/ai5040126

Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, S. (2021). AI Literacy: Definition, Teaching, Evaluation and Ethical Issues. Proceedings of the Association for Information Science and Technology, 58(1), 504–509. https://doi.org/10.1002/pra2.487

Poole, A. H. (2025). Generative AI Use at the iSchools: An Analysis of Policies. Proceedings of the Association for Information Science and Technology, 62(1), 1056–1062. https://doi.org/10.1002/pra2.1339

Wang, H. (2025). Can Large Language Models Serve as Digital Assistants for Medical Undergraduates? – A Bibliometric Mapping and Scoping Analysis of the Medical-Education Literature. Digital Health, 11. https://doi.org/10.1177/20552076251390280

Yigci, D., Eryılmaz, M., Yetisen, A. K., Tasoglu, S., & Özcan, A. (2024). Large Language Model‐Based Chatbots in Higher Education. Advanced Intelligent Systems, 7(3). https://doi.org/10.1002/aisy.202400429

Yim, I. H. Y., & Su, J. (2024). Artificial Intelligence (AI) Learning Tools in K-12 Education: A scoping Review. Journal of Computers in Education. https://doi.org/10.1007/s40692-023-00304-9

Zhang, S., Prasad, P., & Schroeder, N. L. (2025). Learning About AI: A Systematic Review of Reviews on AI Literacy. Journal of Educational Computing Research, 63(5), 1292–1322. https://doi.org/10.1177/07356331251342081




DOI: http://dx.doi.org/10.37905/aksara.12.1.%25p.2026

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Aksara: Jurnal Ilmu Pendidikan Nonformal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Publisher:
Magister Pendidikan Nonformal Pascasarjana Universitas Negeri Gorontalo
Jl. Soedirman No. 06 Gorontalo 96128 e-mail: jurnalaksara@ung.ac.id
http://ejurnal.pps.ung.ac.id