REPRESENTATIONAL COMPETENCE (RC) DALAM KIMIA: MENYELIDIKI KORELASINYA DENGAN PEMAHAMAN GEOMETRI MOLEKUL

Thayban Thayban, Erga Kurniawati, Haris Munandar

Abstract


Penelitian ini bertujuan menyelidiki hubungan antara Representational Competence (RC) dengan pemahaman geometri molekul. Materi geometri molekul merupakan konsep penting dalam kimia, karena memengaruhi sifat fisika dan kimia dari senyawa kimia. Penelitian ini melibatkan 126 mahasiswa Jurusan Kimia dengan menggunakan desain korelasional. Hasil penelitian menunjukkan bahwa terdapat hubungan positif dan kuat antara RC dengan pemahaman geometri molekul. RC diukur menggunakan tes yang mencakup lima keterampilan representasi, sementara pemahaman geometri molekul diukur melalui tes essay. Temuan ini menyoroti pentingnya RC dalam mendukung pemahaman konsep kimia yang membutuhkan kemampuan visualisasi dan spasial, seperti geometri molekul. Hasil penelitian ini memiliki implikasi untuk pengembangan kurikulum dan strategi pengajaran yang menekankan pada pengembangan RC dalam pembelajaran kimia.


Keywords


Representational Competence, Geometri Molekul, Visualisasi Molekul

Full Text:

PDF

References


Abraham, M., Varghese, V., & Tang, H. (2010). Using molecular representations to aid student understanding of stereochemical concepts. Journal of Chemical Education. https://doi.org/10.1021/ed100497f

Appling, J. R., & Peake, L. C. (2004). Instructional Technology and Molecular Visualization. Journal of Science Education and Technology. https://doi.org/10.1023/b:jost.0000045463.40297.0f

Barrett, T. J., Stull, A. T., Hsu, T. M., & Hegarty, M. (2015). Constrained interactivity for relating multiple representations in science: When virtual is better than real. Computers and Education. https://doi.org/10.1016/j.compedu.2014.09.009

Cordova, J. R., Sinatra, G. M., Jones, S. H., Taasoobshirazi, G., & Lombardi, D. (2014). Confidence in prior knowledge, self-efficacy, interest and prior knowledge: Influences on conceptual change. Contemporary Educational Psychology, 39(2). https://doi.org/10.1016/j.cedpsych.2014.03.006

Creswell, J. W. (2014). Research Design: Qualitative, Creswell, J. W. (2014). . Research design Qualitative quantitative and mixed methods approaches. Research Design Qualitative Quantitative and Mixed Methods Approaches.

Dean, N. L., Ewan, C., & McIndoe, J. S. (2016). Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory. Journal of Chemical Education, 93(9). https://doi.org/10.1021/acs.jchemed.6b00186

DiSessa, A. A., & Sherin, B. L. (2000). Meta-representation: An introduction. Journal of Mathematical Behavior, 19(4). https://doi.org/10.1016/S0732-3123(01)00051-7

Edelsbrunner, P. A., Schalk, L., Schumacher, R., & Stern, E. (2018). Variable control and conceptual change: A large-scale quantitative study in elementary school. Learning and Individual Differences, 66. https://doi.org/10.1016/j.lindif.2018.02.003

Effendy. (2017). Molekul, Struktur, dan Sifat-sifatnya. Indonesian Academic Publishing.

Furió, C., Calatayud, M. L., Bárcenas, S. L., & Padilla, O. M. (2000). Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules. Science Education. https://doi.org/10.1002/1098-237X(200009)84:5<545::AID-SCE1>3.0.CO;2-1

Gillespie, R. J. (2004). Teaching molecular geometry with the VSEPR model. In Journal of Chemical Education (Vol. 81, Issue 3). https://doi.org/10.1021/ed081p298

Karonen, M., Murtonen, M., Södervik, I., Manninen, M., & Salomäki, M. (2021). Heuristics hindering the development of understanding of molecular structures in university level chemistry education: The lewis structure as an example. Education Sciences, 11(6). https://doi.org/10.3390/educsci11060258

Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and self-assessment when solving physics problems. Physical Review Special Topics - Physics Education Research, 1(1). https://doi.org/10.1103/PhysRevSTPER.1.010104

Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The Roles of Representations and Tools in the Chemistry Laboratory and Their Implications for Chemistry Learning. Journal of the Learning Sciences, 9(2). https://doi.org/10.1207/s15327809jls0902_1

Kurniawati, E., Thayban, T., Alio, L., & Sukamto, K. (2023). Virtual Vs Concrete Media: Improving Representation Competence. Jurnal Ilmiah Kanderang Tingang, 14(1), 102–111. https://doi.org/10.37304/jikt.v14i1.189

Medina, R., & Suthers, D. (2013). Inscriptions Becoming Representations in Representational Practices. Journal of the Learning Sciences, 22(1). https://doi.org/10.1080/10508406.2012.737390

Nathan, M. J., & Kim, S. (2007). Pattern Generalization with Graphs and Words: A Cross-Sectional and Longitudinal Analysis of Middle School Students’ Representational Fluency. Mathematical Thinking and Learning, 9(3). https://doi.org/10.1080/10986060701360886

Nieminen, P., Savinainen, A., & Viiri, J. (2013). GENDER DIFFERENCES IN LEARNING OF THE CONCEPT OF FORCE, REPRESENTATIONAL CONSISTENCY, AND SCIENTIFIC REASONING. International Journal of Science and Mathematics Education, 11(5). https://doi.org/10.1007/s10763-012-9363-y

Olimpo, J. T., Kumi, B. C., Wroblewski, R., & Dixon, B. L. (2015). Examining the relationship between 2D diagrammatic conventions and students’ success on representational translation tasks in organic chemistry. Chemistry Education Research and Practice. https://doi.org/10.1039/c4rp00169a

Özmen, H. (2004). Some Student Misconceptions in Chemistry: A Literature Review of Chemical Bonding. Journal of Science Education and Technology, 13(2). https://doi.org/10.1023/b:jost.0000031255.92943.6d

Padalkar, S., & Hegarty, M. (2015). Models as feedback: Developing representational competence in chemistry. Journal of Educational Psychology, 107(2), 451–467. https://doi.org/10.1037/a0037516

Scheid, J., Müller, A., Hettmannsperger, R., & Schnotz, W. (2018). Representational Competence in Science Education: From Theory to Assessment. https://doi.org/10.1007/978-3-319-89945-9_13

Scheid, J., Müller, A., Hettmannsperger, R., & Schnotz, W. (2019). Improving learners’ representational coherence ability with experiment-related representational activity tasks. Physical Review Physics Education Research, 15(1). https://doi.org/10.1103/physrevphyseducres.15.010142

Sim, J. H., & Daniel, E. G. S. (2014). Representational competence in chemistry: A comparison between students with different levels of understanding of basic chemical concepts and chemical representations. Cogent Education, 1(1). https://doi.org/10.1080/2331186X.2014.991180

Simonsmeier, B. A., Flaig, M., Deiglmayr, A., Schalk, L., & Schneider, M. (2022). Domain-specific prior knowledge and learning: A meta-analysis. Educational Psychologist, 57(1). https://doi.org/10.1080/00461520.2021.1939700

Stelzer, F., Richard’s, M. M., Andrés, M. L., Vernucci, S., & Introzzi, I. (2021). Cognitive and maths-specific predictors of fraction conceptual knowledge. Educational Psychology, 41(2). https://doi.org/10.1080/01443410.2019.1693508

Stieff, M. (2011). When is a molecule three dimensional? A task-specific role for imagistic reasoning in advanced chemistry. Science Education. https://doi.org/10.1002/sce.20427

Stull, A. T., Barrett, T., & Hegarty, M. (2013). Usability of concrete and virtual models in chemistry instruction. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2013.06.012

Stull, A. T., & Hegarty, M. (2016). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology. https://doi.org/10.1037/edu0000077

Sumarni, W. (2018). Penerapan Learning Cycle Approach Sebagai Upaya Meminimalisasi Miskonsepsi Mahasiswa Pada Materi Struktur Molekul. Jurnal Penelitian Pendidikan Unnes, 27(2).

Thayban, T., Habiddin, H., & Utomo, Y. (2020). Concrete Model VS Virtual Model: Roles and Implications in Chemistry Learning. J-PEK (Jurnal Pembelajaran Kimia), 5(2), 90–107. https://doi.org/10.17977/um026v5i22020p090

Thayban, T., Habiddin, H., Utomo, Y., & Muarifin, M. (2021). Understanding of Symmetry: Measuring the Contribution of Virtual and Concrete Models for Students with Different Spatial Abilities. Acta Chimica Slovenica, 68(3), 736–743. https://doi.org/10.17344/acsi.2021.6836

Tuvi-Arad, I., & Gorsky, P. (2007). New visualization tools for learning molecular symmetry: A preliminary evaluation. Chemistry Education Research and Practice. https://doi.org/10.1039/B6RP90020H

Uyulgan, M. A., Akkuzu, N., & Alpat, Ş. (2014). Assessing the students’ understanding related to molecular geometry using a two-tier diagnostic test. Journal of Baltic Science Education, 13(6). https://doi.org/10.33225/jbse/14.13.839

Uyulgan, M. A., & Nalan, A. (2016). An Insight Towards Conceptual Understanding: Looking into The Molecular Structures of Compounds. Acta Didactica Napocensia, 9(4).

Wilder, A., & Brinkerhoff, J. (2007). Supporting Representational Competence in High School Biology With Computer-Based Biomolecular Visualizations. Journal of Computers in Mathematics and Science Teaching, 26.

Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. In Science Education. https://doi.org/10.1002/sce.10126


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.